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Abstract

We assume that an in®nite material contains a point inhomogeneity which has slightly di�erent elastic constants
from the rest of the otherwise isotropic and homogeneous elastic material. We evaluate the path of a three-

dimensional semi-in®nite quasi static crack propagating near this point inhomogeneity. The real space crack path is
evaluated as well as the power spectrum of the crack surface. The latter enables us to calculate the roughness
exponent for quasi-static fracture. It is also shown how the real space crack surface and its power spectrum can be
obtained for an arbitrary distribution of inhomogeneities. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most theoretical treatments of crack propagation are based on the assumption that the linear elastic
material is isotropic and homogeneous; see for example Lawn (1993), Sih (1973) and Freund (1993).
Real materials contain inclusions and, in spite of their practical importance, little is known theoretically
about crack propagation in the presence of heterogeneities. The main obstacle to a theoretical analysis
of crack propagation in heterogeneous media has been the fact that as a crack passes by an
inhomogeneity, it also changes its surface geometry. In turn, this geometrical perturbation in¯uences the
direction of crack propagation. Only recently has the relationship between a small perturbation of the
crack surface and the direction of crack propagation been quanti®ed in three dimensions (see Ball and
Larralde, 1995; Al-Falou et al., 1998). Previous calculations (e.g. Gao, 1992; Xu et al., 1994) lead to
similar results apart from a di�erent prefactor of KII. Using this result, we can decompose the
calculation of the crack path into the known geometrical contribution and an inhomogeneity
contribution which remains to be evaluated in this paper.

The base problem we consider is that of a crack propagating past a point inclusion of (slightly)
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di�erent elastic constants from the surrounding medium. We calculate the resulting crack surface
de¯ection to leading, linear order in the elastic constant variation. The linearity of this calculation
means that it can be interpreted as the general response function to elastic perturbations, and the
response to general (but weak) perturbations is obtained by superposition. For tractability, our
calculations are limited to quasi-static type I crack propagation through a locally linear and elastically
isotropic material. Restricting the inhomogeneities to isotropic elasticity still leaves the variation of the
two LameÂ parameters to consider.

The main burden of our calculation is to evaluate the ®rst order mode II stress intensity factor KII

(the zeroth order vanishes as the unperturbed crack is purely under mode I loading) along the perturbed
crack crack edge. Then the maximal Hoop stress criterion, i.e. KII[h ]=0, implies a functional equation
for the crack surface h(x,z ) determining the path of the crack edge. Here and in the following, the
coordinates x, y and z denote the frame of reference of the unperturbed (planar) crack oriented as in
Fig. 1.

2. The virtual force from a point inclusion

We anticipate that, in the presence of an inhomogeneity, the geometry of the crack will be slightly
disturbed. We can decompose the ®rst order contribution to the displacement ®eld into a geometrical
part for the homogeneous material (as if the crack surface were perturbed and the material
homogeneous), ug, and an inhomogeneous part for a planar crack (as if the crack were planar and the
material has an inhomogeneity), ui. The total displacement up to ®rst order is

u � u0 � ug � ui, �1�

where u0 is the mode I displacement ®eld of the unperturbed crack. Finally, we want to obtain the mode
II stress intensity factors KII,g and KII,i associated with ug and ui. Note that the stress intensity factor for
the geometrical contribution has already been calculated by Ball and Larralde (1995) (see also Al-Falou
et al., 1998) to be

KII,g�kz� � KI

2

�
@hkz �`x�
@`x

� 2ÿ 3n
2ÿ n

jkzjhkz �`x�
�
, �2�

where `x denotes the x position of the crack edge, hkz �x� is the Fourier transformed vertical perturbation
of the planar crack and and KII,g (kz ) is the corresponding transformed mode II stress intensity factor
along the crack edge.

In the following, we shall calculate KII,i associated with ui. We assume that the material without the
inclusion is isotropic and homogeneous with an elastic moduli tensor C, given by

Fig. 1. Crack propagation near a point inhomogeneity at position a.
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Cijkl � ldijdkl � m�dikdjl � dildjk�: �3�
The elastic moduli tensor of the inclusion at the point a is C+dCf(xÿa), where we treat dC as a

perturbation to ®rst order. To calculate the linear response in the mode II stress intensity factor to a
variation of l, we set f(xÿa)=dVd(xÿa), where dV is the (in®nitesimal) volume of the inclusion. The
linear equations of elasticity read as:

ÿr � s � 0

with

s � �C� dCdV d�xÿ a��:ru, �4�

and the boundary conditions,

n � s � 0 �5�

on the planar crack surface, whose outward normal is n. Inserting u=u0+ui in Eq. (4), we obtain

ÿr � dCdV d�xÿ a�:ru0 ÿ r � �C� dCdV d�xÿ a��:rui � 0, �6�
since, by de®nition, u0 satis®es the linear elastic equations for the elastic moduli tensor C. The boundary
conditions become

n � dCdV d�xÿ a�:ru0 � n � �C� dCdV d�xÿ a��:rui � 0 �7�
on the planar crack surface. Neglecting second and higher order contributions in Eqs. (6) and (7), we
obtain

ÿr � C:rui � f
virtual

with

f
virtual
� rdCdV d�xÿ a�:ru0 �8�

and

n � C:rui � 0 on the crack surface: �9�
Note that in the last equation, we have used the fact that the symmetric strain tensor (Hu0)s of a quasi

static crack under mode I loading vanishes on the crack surface (see also Ball and Larralde, 1995).

3. KII for a point inclusion

Eqs. (8) and (9) together reduce the problem of a point inclusion to an equivalent force on a planar
crack. Using the 3-D mode II weight function GII, given in Appendix A, we now proceed to evaluate the
corresponding mode II stress intensity factor. Direct application gives

KII,i�Z � �
�
O

d 3xGII�x,Z �rdCdV d�xÿ a�:ru0�x�,

KII,i�Z � � ÿrGII�ax,ay,az ÿ Z �:dCdV:ru0�ax,ay�, �10�
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where we have integrated by parts to obtain the second equation. We have no contributions from
boundary terms since we assume that the inclusion is located in the bulk, that is ay$0, so that the delta
function yields zero on the crack faces. With dCijkl � dldijdkl � dm�dikdjl � dildjk�, the tensor product in
Eq. (10) reads

KII,i�Z � � ÿdV�dl div GII div u0 � dm@ jGi�@ iu0,j � @ ju0,i ��: �11�
Note that the three-dimensional weight function as given in Appendix A is still Fourier transformed

in its z coordinate. Therefore, we shall calculate the mode II stress intensity factor for each Fourier
component KII,i (a,kz ) and the real space stress intensity factor is obtained from

KII,i�a,Z � �
�1
ÿ1

dkzKII,i�a,kz�eikzZ, �12�

where Eq. (11) yields

KII,i�a,kz� � ÿdV
h
dl div

�
GII�ax,ay,ÿ kz�eÿikzaz

�
div u0

� dm@ j
�
Gi�ax,ay,ÿ kz�eÿikzaz

�ÿ
@ iu0,j � @ ju0,i

�i
:

�13�

Note that derivatives are taken with respect to the a coordinates and GII(k) and u0 are known
functions. Since div GII and div u0 satisfy Laplace's equation, they have a comparatively simple form,
whereas the remainder in Eq. (13) contains the complementary error function. For simplicity of
exposition, we shall restrict ourselves to the case where dm=0 in what follows, thereby avoiding integrals
involving the complementary error function. From Lawn (1993), we have

div u0�x� �
�������
jkzj

p KI

m
�1ÿ 2n���������������
2pjkzjr
p cos

f
2

�14�

and from Appendix A,

div
�
GII�ax,ay,ÿ kz�eÿikzaz

�
� ÿ

�������
jkzj

p
jkzj 1ÿ 2n

2�1ÿ n�
1������

2p
p �jkzjr�3=2

� eÿjkzjr
�
1� 2n

2ÿ n
jkzjr� 2 cos f� 2jkzjr cos f

�
eÿikzaz :

�15�

Setting these in Eq. (13) with r �
���������������
a2x � a2y

q
, ax=r cos f and ay=r sin f, we obtain

KII,i�a,kz� � KI
dVdl
m
�1ÿ 2n�2
8p�1ÿ n�ayjkzj

3eÿjkzjr
 

1

�jkzjr�3
� 2n

2ÿ n
1

�jkzjr�2
� 2jkzjax
�jkzjr�3

� 2jkzjax
�jkzjr�4

!
eÿikzaz , �16�

if the crack tip is at x= 0 and the point inclusion at (ax,ay,az ). For an advancing crack whose tip is at
x=`x, we replace ax by axÿ`x in the last equation. For a general spatial distribution of inclusions dl(x),
we obtain the resulting mode II stress intensity factor from

KII,i�kz� �
�
O

d 3adl�a�KII,i�a,kz�, �17�

where dl is replaced by dl(a) in Eq. (16). In the general case, we need to include the response to dm$0
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and l=0, which we add to Eq. (16). It is straightforward but cumbersome to compute this expression
from Eq. (13).

Physically the restricted case dm 1 0 can be attained in a material containing a small volume fraction
f of voids but otherwise nearly incompressible. This gives

1

l
� 1

l0
� A

f
m0

, m � m0�1ÿ Bf�, �18�

where A and B are positive constants of order unity and the LameÂ constants, l0>>m0, refer to the
voidless case. Then

dl
l
� ÿAdf

m0
l0
� Af

�19�

can be large compared to dm/m=ÿBdf.

4. The evolution equation for the crack tip

We assume that the crack propagates due to the maximal Hoop stress criterion, i.e., in the direction
where the total mode II singular stress is zero. We have two contributions to the total mode II stress
intensity factor. First, KII,i which arises from the inclusion and which we have calculated above. Second,
KII,g from the geometric perturbation of the crack surface from planarity which has been calculated by
Ball and Larralde (1995) (see also Al-Falou et al., 1998) is given in Eq. (2). Then the evolution equation
is

0 � KII,g � KII,i: �20�
Substituting Eq. (16) into Eq. (20), the evolution equation becomes

@hkz �`x�
@`x

� 2ÿ 3n
2ÿ n

jkzjhkz �`x� � ÿdV
dl
l

n�1ÿ 2n�
2p�1ÿ n�ayjkzj

3eÿikzazeÿjkzjr

�
 

1

�jkzjr�3
� 2n

2ÿ n
1

�jkzjr�2
� 2jkzj�ax ÿ `x�

�jkzjr�3
� 2jkzj�ax ÿ `x�

�jkzjr�4
!
,

�21�

where r �
������������������������������
�ax ÿ `x�2 � a2y

q
. Note that we have used the relationship l � 2n

1ÿ2nm.

5. Relating the power spectrum of the crack surface to the distribution of the inhomogeneities

In practice, the power spectrum of the crack surface, jĥ�kx,kz�j
2

Ak
, is measured in di�raction experiments.

Here A6denotes the crack surface area covered by the scattering beam and the reason for dividing by A6
is to de®ne the power spectrum independently of the size of the sample or the scattering beam. In this
section we want to relate the power spectrum to the distribution of dl(a). First, we rewrite Eq. (21) for
a general distribution dl(a),

@hkz �`x�
@`x

� 2ÿ 3n
2ÿ n

jkzjhkz �`x� � ÿ
n�1ÿ 2n�
2p�1ÿ n�l

�
O

d 3adl�a�eÿikzaz ĝ�`x ÿ ax,ÿ ay,kz�, �22�
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with

ĝ�x,y,kz� � ÿjkzj3yeÿjkzjr
 

1

�jkzjr�3
� 2n

2ÿ n
1

�jkzjr�2
ÿ 2jkzjx
�jkzjr�3

ÿ 2jkzjx
�jkzjr�4

!
, �23�

where r �
����������������
x2 � y2

p
and O is the region occupied by the elastic material. We note that the integral on

the right hand side of Eq. (22) is a convolution integral with respect to `x and the Fourier transform of
dl(a) with respect to az. We now need to Fourier transform ĝ�x,y,kz� in Eq. (23) with respect to x and y
to obtain an equation for ĥ�kx,kz� which relates the experimental data about the power spectrum of the
crack surface to the Fourier transformed distribution of inhomogeneities in the bulk of the material.
The evaluation of the Fourier transform is straightforward and important steps are given in Appendix
B. The ®nal result reads:

ĥ�kx,kz� � ÿ n�1ÿ 2n�
�2p�2�1ÿ n�l

�1
ÿ1

dkyĝ�k�dl̂�k�

ikx � 2ÿ 3n
2ÿ n

jkzj
, �24�

where the function ĝ�k� is given in Eq. (B4) in Appendix B,

ĝ�k� � 2p
kxkyk

2
z�

k2x � k2y

�2
0@2ÿ k2x � k2y

k2z
ÿ 2jkzj��������������������������

k2x � k2y � k2z

q 1A
� 2piky

0@ 1��������������������������
k2x � k2y � k2z

q ÿ 2ÿ 3n
2ÿ n

k2z
k2x � k2y

0@ 1

jkzj ÿ
1��������������������������

k2x � k2y � k2z

q 1A1A:
�25�

Eqs. (24) and (25) constitute the formal linear response of the crack displacement to elastic modulus
¯uctuations. From these, we can obtain the power spectrum in terms of the distribution dl(x),

jĥ�kx,kz�j2
Ak

� 1

Ak

 
n�1ÿ 2n�
�2p�2�1ÿ n�l

!2

�1
ÿ1

dky

�1
ÿ1

dk 0yĝ�k�dl̂�k�ĝ�ÿk 0�dl̂�ÿk 0�

jikx � 2ÿ 3n
2ÿ n

jkzjj2
, �26�

where k=(kx,ky,kz ) and k 0 � �kx,k 0y,kz�.
However, under further assumptions we can relate the spectrum jdl̂�k�j2 directly to the spectrum
jĥ�kx,kz�j2. Let us assume that we average jĥ�kx,kz�j2 over a large number of experiments and that the
distribution of inhomogeneities remains the same. In each experiment, the location of the crack surface
is arbitrary shifted by an amount �y with respect to a reference surface. The average over �y yields zero
for the o�-diagonal elements of the operator in Eq. (26) since the average over �y of both sides in Eq.
(26) can be written as

hjĥ�kx,kz�j2i �
�
d �y

Ly

�
dy

�
dy 0

�
dky

2p

�
dk 0y
2p

eÿikyyeik
0
yy
0
f �yÿ �y� f� y 0 ÿ �y �, �27�

where the integrand in Eq. (26) is abbreviated by f̂�ky�f̂�k 0y � and Ly denotes the extension of the material
in the y direction. We observe that after translation of y and y ', the �y integral yields 2pd�ky ÿ k 0y �.
Hence, we obtain
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hjĥ�kx,kz�j2i
Ak

�
�

n�1ÿ 2n�
2p�1ÿ n�l

�2

�1
ÿ1

dkyjĝ�k�j2 jdl̂�k�j
2

V

jikx � 2ÿ 3n
2ÿ n

jkzjj2
, �28�

where the brackets denote the average over �y and V=A6Ly.
Our result Eq. (28) directly relates the two-dimensional power spectrum of height ¯uctuations in the

fracture surface to the three-dimensional power spectrum of elastic modulus ¯uctuations. The former are
frequently parametrised in terms of a roughness exponent z, such that the power spectrum scales with
kk �

���������������
k2x � k2z

p
as

hjĥ�kx,kz�j2i0kÿ2zÿ2k , �29�

where a broad range of measurements give z 1 0.5±0.8 (see for example Bouchaud, 1997). Whilst most
of the cracks measured were dynamical and far from quasi-static, it is interesting to examine what
inhomogeneity spectrum can lead to the same result from our quasi-static calculations. As ĝ is
homogeneous and of degree 0 in k, one ®nds

jdl̂�k�j20kÿ2zÿ1 �30�
is required, assuming the integral in Eq. (28) to converge as it does for z>0. Thus, within a quasi-static
analysis, z 1 0.8 requires an inhomogeneity spectrum which is not compelling.

The function ĝ�k� can be written as jĝ�k�j2 � 4p2 � order�kÿ2y � for large ky. Thus, for jdl̂�k�j2 falling
o� slower than kÿ1 (as, for example, for white noise), the integral in Eq. (28) diverges at large ky. In
particular, its leading order does not depend on kx and kz, yielding hjĥ�kx,kz�j2i0kÿ2k and a roughness
exponent of zero. This corresponds to the observations of Ball and Larralde on a brittle foam (see
Larralde and Ball, 1995). This suggests that quasi-static fracture has a `universal' roughness exponent of
zero, and that the observations of Bouchaud correspond to a fundamentally di�erent dynamical regime.

6. The real space disturbance of a crack near an inhomogeneity

In the last section on crack propagation near heterogeneities we shall investigate the disturbance of
the crack in real space, i.e., h(x,z ). We assume that an initially planar crack propagates in an isotropic
and otherwise homogeneous elastic material. The material has a point inhomogeneity at a=(ax,ay,az )
with elastic constants l+dVdld(xÿa) and dm=0, where l and m are the elastic constants of the bulk
material. We recall that dV is the (in®nitesimal) extension of the inclusion. We now want to investigate
the real space height function for a point inhomogeneity. We may anticipate that the crack surface is
disturbed in the vicinity of the inhomogeneity whereas it becomes ¯at further away. We obtain ĥ�`x,kz�
from the original evolution equation Eq. (21) to be

hkz �`x� � ÿdV
dl
l

n�1ÿ 2n�
2p�1ÿ n�ayjkzj

3eÿikzazeÿjkzjr
�`x
ÿ1

dxe
2ÿ3n
2ÿn jkzj�xÿ`x�

�
 

1

�jkzjr�3
� 2n

2ÿ n
1

�jkzjr�2
� 2jkzj�ax ÿ x�

�jkzjr�3
� 2jkzj�ax ÿ x�

�jkzjr�4
!
,

�31�

where r �
�����������������������������
�ax ÿ x�2 � a2y

q
. Note that, as the crack is initially planar, hkz �ÿ1� � 0. The integral in
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Eq. (31) can be written explicitly in terms of elementary functions. The explicit formula for h(`x,`z ) is
derived in Appendix C. For the purpose of practical implementation, it is more convenient to start from
the basic integral in Eq. (C6) and then to di�erentiate with respect to d, a+ and aÿ.

In Fig. 2, we see the evolution of the crack surface in the presence of a point inclusion at (0,ay,0) as a
function the variables `x/ay and z/ay. The height function h(`x,z ) is given by h�`x,z� � ÿdl

l
dV

4p2a2y
h, where h

is the dimensionless quantity in Fig. 2. Poisson's ratio is chosen to be n=1/3. As anticipated, the
distortion is maximal near the point inhomogeneity and ¯attens out further away. We also see that the
perturbation decays slowly as the crack passes by the point inclusion.

In Fig. 3, we see line cuts of the crack surface along the `x-axis for di�erent Poisson's ratios. We
observe that h(`x,z,a) is not symmetric with respect to `x. The crack surface increases steeply near the
inclusion and decreases comparatively slowly. A close examination shows that the maximum value of
the height distortion is shifted towards positive `x. The shape of the crack surface near the
inhomogeneity remains the same for all four Poisson's ratios; only the amplitude of the distortion
increases modestly with larger n. We may quantify these features by asymptotically expanding the rather
complicated exact result.

It is often su�cient to know the asymptotic behaviour of h(`x,z,a) near and far away from the point
inclusion. For `x/ay, z/ay<<1, we have

Fig. 2. The crack surface near a point inhomogeneity at (0,ay,0). The axes are normalised to ay. Poisson's ratio is n=1/3.
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h�`x,z,a�1ÿ dV
a2y

dl
l

n�2ÿ n��1ÿ 2n�
2p2�1ÿ n�2

8>>><>>>: 1� g

4g3
�������������
1ÿ g2

p �
0@ �������������

1ÿ g2
p ÿ

ÿ 2gÿ g3 � p� g2p
�

� 2
ÿ
ÿ 2ÿ g2 � g3

�
arctan

0@ ������������
1ÿ g
1� g

s 1A1A� 3

�
`x ÿ ax

ay

�2

8�ÿ1� g�g30BB@ÿ 8g� 4g3 � g5 � g4�1ÿ 2p� � 4pÿ 2g2pÿ
2�8ÿ 8g2 ÿ 3g4 � g5�arctan

 ������������
1ÿ g
1� g

r !
�������������
1ÿ g2

p
1CCA

�

�
zÿ az
ay

�2

8�ÿ1� g�g5

0BB@
24gÿ 8g3 ÿ 9g5 ÿ 3g6 � 2g7 ÿ 12p� 6g2p� 6g4p

�
6�8ÿ 8g2 ÿ 3g4 � g5�arctan

 ������������
1ÿ g
1� g

r !
�������������
1ÿ g2

p
1CCA

�
`x ÿ ax

ay

�
g�6� 3g� 5g2� � �6� 6g� 4g2 � 4g3�log

�
1

1� g

��
4g3

9>>>=>>>;,

�32�

with g � 2ÿ3n
2ÿn . In the special case where n=1/3 (see Fig. 2), the above expression reduces to

h�`x,z,a�1ÿ dl
l

dV
4p2a2y

(
0:57317� 0:15922

`x
ay
ÿ 0:67754

`2x
a2y
ÿ 0:46980

z2

a2y

)
: �33�

The expansion far away from the inhomogeneity assumes only `xÿax
ay
� 1, i.e., z is left arbitrary. For

positive `xÿax
ay

, as the crack passes by the inclusion, we obtain

h�`x,z,a�1ÿ dl
l

n�2ÿ n��1ÿ 2n�
2p2�1ÿ n�2

dV
ay

(
2�1ÿ n��2ÿ 3n��`x ÿ ax�

�2ÿ 3n�2�`x ÿ ax�2 � �2ÿ n�2�zÿ az�2
)
: �34�

If dl(a) is a general distribution of inhomogeneities, the asymptotic value of h(`x,z ) for `x>>ay is

h�`x,z�1ÿ
�
O

d 3a
dl�a�
l

n�2ÿ n��1ÿ 2n�
2p2�1ÿ n�2

1

ay
�
(

2�1ÿ n��2ÿ 3n��`x ÿ ax�
�2ÿ 3n�2�`x ÿ ax�2 � �2ÿ n�2�zÿ az�2

)
: �35�

We can now imagine that we have a line of inhomogeneities parallel to the z-axis at ay and ax=0, i.e.,
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dl(x)=dAdld(x )d( yÿay ), where dA denotes the cross section of the line heterogeneity. Indeed, this is a
two-dimensional model of a crack near an inhomogeneity. Then the integration in Eq. (35) yields

h�`x,ay�1ÿ dl
l
2n�1ÿ 2n�
p�1ÿ n�

dA
ay

for `x � ay: �36�

That means as the crack propagates it becomes planar again, but it is shifted by the amount given in
Eq. (36).

We also observe that the crack is attracted towards an inhomogeneity if dl < 0, and repulsed if
dl>0, as shown here. This is in agreement with our physical understanding, since negative dl means
that the inclusion is softer than the rest of the material. Hence, the strain around the inclusion is higher,
and therefore, the crack is attracted towards the inclusion.

For a general distribution of inhomogeneities we obtain the height function by integrating
h(`x,z,a)dl(a) over the region occupied by the elastic material. All this suggests a great variety of
interesting industrial applications, such as, `guiding' a crack by the placing of appropriate
inhomogeneities.

7. Conclusion

We have evaluated the path of a quasi-static crack near a heterogeneity with slightly di�erent
elastic constants from the bulk. We relate the Fourier transformed distribution of the heterogeneties
to the power spectrum of the crack surface and thereby deduce a zero roughness exponent in quasi-

Fig. 3. Line plots of the crack surface h(x,`z=0) near a point inhomogeneity at (0,ay,0) for di�erent values of Poisson's ratio. The

crack surface is given by h�x,`z � 0� � ÿ dV
4pa2y

h, where h is the plotted quantity.
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static crack propagation. This is in agreement with experimental observations by Larralde and Ball
(1995). Bouchaud (1997) obtained a roughness exponent of 0.5±0.8 for dynamical cracks suggesting
that the roughness exponent depends on the velocity of the crack. We strongly suggest further
experimental investigation into the roughness of quasi-static crack surfaces. We also present closed
analytic expressions for the crack surface in real space with asymptotic approximations close and far
away from a point inhomogeneity.

Appendix A. The 3-D mode II weight function

The components of the mode II 3-D weight function for a planar semi-in®nite crack are given by (see
Al-Falou and Ball, 1998)

GII,x�x,y,kz� �
�������
jkzj

p 24ÿ
8ÿ 12n� 4n2 � �2ÿ n��cos f� cos 2f� � rjkzj�ÿ2� 11nÿ 8n2 � 2n

cos f� �2ÿ n�cos 2f�
� sin

f
2

4�1ÿ n��2ÿ n�
eÿrjkzj��������������
2prjkzj
p � 1ÿ 2n

2ÿ n
jkzjr sin f

2
erjkzjcos f

erfc

� ������������
2rjkzj

p
cos

f
2

�35
,

�A1�

GII,y�x,y,kz� �
�������
jkzj

p
264ÿ

4ÿ 10n� 4n2 � �2ÿ n��cos fÿ cos 2f� � rjkzj�ÿ2� 3n� 4�1ÿ n�cos f

ÿ �2ÿ n�cos 2f�
� cos

�
f
2

�
4�1ÿ n��2ÿ n� �

eÿrjkzj��������������
2prjkzj
p ÿ 1ÿ 2n

2�2ÿ n�e
rjkzjcos f erfc

� ������������
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p
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f
2
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�A2�

and

GII,z�x,y,kz� � i sign�kz�
�������
jkzj

p
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�
ÿ 1� 5

2
nÿ 2n2 ÿ 2ÿ n

2
cos f

�
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f
2

�1ÿ n��2ÿ n� �
����������
rjkzj
2p

r
eÿrjkzj

� 1ÿ 2n
2ÿ n

rjkzjsin f
2

erjkzjcos ferfc

� ������������
2rjkzj

p
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f
2

�375
,

�A3�

where x=r cos f, y=r sin f and erfc denotes the complementary error function. The weight functions
GII,z (x0,y0,kz ) as stated above, return the Fourier transformed mode II stress intensity factor KII(kz ) for
a volume force of the form f�x� � fd�xÿ x0�d� yÿ y0�eikzz. Fully in real space, GII is given by
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GII�Z,x,y,z� �
1

2p

�1
ÿ1

dkzGII�x,y,kz�eikz�zÿZ �: �A4�

If g is an arbitrary loading applied at the crack surface and f a volume force, we obtain the mode II
stress intensity factor at point Z along the crack tip in the form

K�Z � �
�
O

d 3xGII�Z,x� � f�x� �
�
@O

dSGII�Z,x�S �� � g�x�S ��, �A5�

where O and @O are the domain and the boundary of the material, respectively.

Appendix B. The Fourier transformed Green function for a point inclusion

In this section, we want to Fourier transform the function ĝ�x,y,kz� in Eq. (23) with respect to x and
y. We recall

ĝ�x,y,kz� � ÿjkzj3yeÿjkzjr
 

1

�jkzjr�3
� 2n

2ÿ n
1

�jkzjr�2
ÿ 2jkzjx
�jkzjr�3

ÿ 2jkzjx
�jkzjr�4

!
, �B1�

where r �
����������������
x2 � y2

p
. It is convenient to substitute x and y by the dimensionless variables |kz|x and |kz|y

and to replace kx 4 kx/|kz|, ky 4 ky/|kz|. The Fourier integral is best decomposed into a regular part
and a part which shall be regularised by di�erentiation. In the new variables the back Fourier transform
reads

ĝ�kx,ky,kz� �
�p
ÿp

df
�1
0

drreÿirk cos�fÿc�eÿr
�
2xy

r3
ÿ 2n
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0

drreÿirkcos�fÿc�
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2xy

r4
ÿ y

r3

�
,

�B2�

where x=r cos f, y=r sin f, kx=k cos c and ky=k sin c. The ®rst integral in Eq. (B2) can be obtained
by integrating with respect to r ®rst and then to perform the angular integral by complex contour
integration. In the second integral, we ®rst di�erentiate with respect to k and then evaluate the integrals.
Then the result needs to be integrated with respect to k. We obtain

ĝ�kx,ky,kz� � 4pkxky
k4

 
2ÿ 2� k2�������������
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� 2n

2ÿ n
2piky
k2

�
1ÿ 1�������������

1� k2
p

�

� 4pkxky
k4

� �������������
1� k2

p
ÿ 1ÿ k2

2

�
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1� k2

p
ÿ 1�:

�B3�

Re-establishing the old variables and rearranging terms yields
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Appendix C. Evaluation of the real space crack surface

We assume that an initially planar crack propagates in an isotropic and otherwise homogeneous
elastic material. The material has a point inhomogeneity at a=(0,ay,0) with elastic constants
l+dVdld(xÿa) and dm=0. l and m are the elastic constants of the material. We obtain h(`x,kz ) from
the original evolution equation Eq. (21) to be

hkz �`x� � ÿdV
dl
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where r �
�����������������������������
�ax ÿ x�2 � a2y

q
. Note that hkz �ÿ1� � 0 as the crack is initially planar. The substitution u �

axÿx
ay

further simpli®es Eq. (C1) to
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�C2�

where r � ��������������
x2 � 1
p

. It is more convenient to ®rst perform the back Fourier transform with
respect to kz
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In the last integral, we ®rst substitute x= sinh u followed by the substitution t= eu to obtain
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This is a standard integral of a rational function which can be derived (through di�erentiation with
respect to d, a+ and aÿ) from the integral
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and

a � ax ÿ `x
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